
Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

1

Interface of EPICS with MARTe

for Real-time Application

October 23, 2012

Sangwon Yun

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

2 2

Outlines

 Introduction
 ITER Task

 Overview of main technical subjects
 Multi-threaded Application Real-Time executor (MARTe)
 Portable Channel Access Server (pCAS)

 Interface of EPICS with MARTe
 The result of performance evaluation of MARTe
 Conclusions
 Acknowledgements and references

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

3 3

Introduction

 ITER Task

See: Fast Controller Workshop, Feb 28, 2011. ITER IO

 CODAC HPC (High Performance Computer)
 Dedicated computers running plasma control algorithms
 The Plasma Control System(PCS) requires the hard real-time operation
 The hard real-time control system requires the predictability in response time and deterministic upper bound

in latency. In this regard, RTOS and real-time software framework are required to achieve those

 ITER Task : Evaluation and Demonstration of ITER CODAC Technologies at KSTAR
 Subtask : Implement density feedback control and verify its performance in a running device

• To collect elements for decision making on PCS software framework
• Deploy different PCS software framework based on KSTAR PCS on modified Linux and MARTe on RTOS

for comparison

RTOS
(MRG Realtime)

Modified Linux
(Based on RHEL)

KSTAR
PCS

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

4 4

Introduction

 MARTe framework for Hard Real-time Control System

See: A. Barbalace, et. al, Performance comparison of EPICS IOC and MARTe in a Hard Real-Time Control Application,
in IEEE-NPSS RT 2010

MARTe is a solution to be considered for a Real-time control system

• The three considered system
The optimized reference program
EPICS IOC
MARTe application

• Test conditions
Run the system by providing an external

sampling clock of 1 kHz
30,000 cycles
Priority of the thread for ADC has been set to

the highest
CPU affinity (excepts EPICS IOC)

• Result
MARTe provides a shorter and, above all,

more bounded latency
The added latency due to MARTe in respect of

the reference program is on average 2.7 µs
The added latency due to EPICS is 17 µs

• New comparison the affinity patched EPICS

Reference

Prog.
EPICS IOC MARTe

min 19.0 us 30.0 us 20.9 us

MAX 28.3 us 60.5 us 31.3 us

Avg 22.3 us 39.3 us 25.0 us

min, MAX and average overall IO latency

Latency distribution

histogram

http://www.aps.anl.gov/epics/index.php

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

5 5

Introduction

 Integration of MARTe applications with KSTAR Systems

 Interface with EPICS as a framework for the control systems
 The EPICS is a standard framework for the control systems of ITER and KSTAR
 Sequential operation for plasma experiment
 Configuration and monitoring the MARTe applications and signals

 Interface with MDSplus as a database for the experimental data based on a pulse

Central
Controller

KSTAR SCS

KSTAR TSS
(Timing)

KSTAR
Data

System
(MDSplus)

KSTAR Fueling
System

Fuel
Controller

KSTAR
MMWI

PCS HPC

KSTAR SIS
(Interlock)

Sequential
Operation

Status

ITER CODAC Demo System

CA
Plasma
density

Actuator

CSS BOY OPI for PCS HPC

pCAS

pCAS

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

6 6

MARTe

 A bit of history

 MARTe has been developed at JET in collaboration also with RFX
 At the end of 90s at JET only dedicated hardware/software solutions
 The Joint European Torus (JET) is the world’s largest and most powerful tokamak
 Limitations : No flexibility, No easy debugging and testing, Long commissioning time

 JETRT framework (2002/2003)
 Based on a cross-platform library: BaseLib
 Clear separation between application and infrastructure software
 Application can abstract from the plant interfaces
 Increase code reusability, Achieve standardization
 Limitations

• It didn’t provide a real separation between the user application from the plant interface
software

• Need to be recompiled entirely in case of changing in both interface side and/or
application side

 MARTe (2006 ~)
 An implementation of numerous concepts during the last 10 years of work mainly at JET
 Underlying BaseLib2 is the supporting collection of libraries that make MARTe possible.

• The net separation between I/O and application has been the driving concept.
• High modularity and separation allow fast debugging and testing, short commissioning

time, high portability and adaptability.
• Programmability of single GAM allows to use the same algorithm in many application

http://www.ccfe.ac.uk/index.aspx

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

7 7

MARTe

 MARTe in Fusion

 Machines adopted MARTe as real-time framework for their control system

 JET : CCFE, UK
 Vertical Stabilization System (VS) : RTAI , 50µs Cycle time with jitter < 1µs, ATCA
 Error Field Correction Coils (EFCC) : VxWorks, 200µs Cycle time, VME
 Real Time Protection System : VxWorks 6
 Vessel Thermal Map (VTM) : Linux
 WALLS2011 : Linux

 ISTTOK : IST Lisbon, Portugal
 Real-time tomography : Linux-RTAI, 100µs Cycle time, ATCA

 COMPASS : Prague, Czech Republic
 Plasma Magnetic Control System : Linux, 50~500µs Cycle time, ATCA

 RFX : Consorzio RFX Padua, Italy
 Magnetic Control System : Linux (Preempt RT), 200~250µs Cycle time, PXI

 FTU : ENEA Frascati, Italy
 Lower Hybrid power ratio control : RTAI, 250µs Cycle time, VME

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

8 8

MARTe

 MARTe Framework is

 Multi-threaded Application Real-Time executor (MARTe)
 Multi-platform C++ middleware designed for real-time control system
 It runs on Linux, Linux+RTAI, VxWorks , Solaris, Windows and Mac OS X

• The supporting multi-platform allows to develop and debug the real-time application in
non RT targets

• This gives usually better developing environment and allows short commissioning time
 Middleware for Real-time Control development

 Simulink-like way of describing the problem
 Modularity (GAMs)
 The atomic element of MARTe is named Generic Application Module (GAM), and all

applications built using the framework are designed around these components
 Data is transferred between GAMs by using an optimized memory bus named Dynamic Data

Buffer (DDB). The DDB is the only available way for GAMs to interchange information
 This characteristic of the GAM and DDB guarantee the clear boundary between algorithms,

hardware interaction and system configuration. In addition, reusability and maintainability are
also increased

 Simulation
• Replace actuators and plants with models
• Keep all the other modules untouched

 Minimize constraints with the operational environments (portability)

 Data driven

 Provide live introspection tools without sacrificing RT

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

9 9

MARTe

 Quick look at MARTe

Common GAMs IOGAM DDB

RT-Thread

The real-time thread is a container of GAMs and acts as a
GAM micro scheduler being responsible for their sequential
execution. The thread can be configured to run in specific
processors and can be assigned to a specified priority.

The figure depicts a possible set of modules that start by
acquiring signals from a hardware device, processing and
taking decisions upon this data, and finally outputting the
signals to both a device and a storage scheme.

Threads can be configured to run at a specific frequency, and
all the GAMs are expected to execute within this time.

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

10 10

MARTe

 Quick look at MARTe

Similarities and Differences

Case Study

EPICS IOC MARTe

modular components based architectures Records GAMs

current configuration is defined in a text file ReCompile ReLoading

computational resource model No Control Full Control

See: A. Barbalace, et. al, Performance comparison of EPICS IOC and MARTe in a Hard Real-Time Control Application,
in IEEE-NPSS RT 2010

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

11 11

Portable Channel Access Server

 Channel Access : The EPICS Network Protocol
 The Channel Access server exports data to EPICS and the Channel Access client can

read and write Process Variables over the network
 Any host want to export own data to EPICS should be the Channel Access Server
 The pCAS makes any host as a Channel Access Server
 The Server side tool uses the CAS library and the CAS library uses CA protocol

IOC

IOC Host

Server Client: CSS CA

Client: CA Link

Client: Archiver

Host

Server
CA

CA

Source
Data Source/Store

Server Side tool

CAS Library

CA Protocol

See: Jeff Hill, Kay-Uwe Kasemir, Channel Access Server Tool Developers Training

MARTe

DDB

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

12 12

Portable Channel Access Server

 Overview

 What is the Portable Channel Access Server (pCAS)?
 The pCAS consists of a C++ library with a simple class interface
 Using the simple interface to the library, a developer can create a Channel Access

server tool that can interact with an EPICS database as well as other applications

 Functions of the Server Tool
 Creates/deletes server instance
 Responds to client requests

• PV search, Attach/detach request, Read/Write request
 Posts change of state events

 Example CA servers
 Channel access gateway
 Directory server, Fault logger APT HPRF
 KECK instruments, KEKB gateway to LINAC control system
 SLAC gateway to SLAC control system, Gateways to other control systems at DESY

 Advantages of a Server Tool
 MARTe application becomes an EPICS Channel Access Server tool
 MARTe signals become EPICS process variables

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

13 13

Portable Channel Access Server

 C++ Server Interface

 The Portable Server API consists of 9 classes
 Server class, caServer

 Every server tool must include a class derived from the caServer class
 Informs the server library if a PV is associated with the server tool
 Attaches a PV when a client wishes to establish a connection

 Process variable class, casPV
• Responds to read/write PV requests : read(), write()
• Responds to a request for a PV monitor : interestRegister(), interestDelete(), postEvent()

 pvExistReturn : Response to a client CA search
 pvAttachReturn : Called when client wishes to attach to PV
 Channel class, casChannel
 casAsyncPVExistIO
 casAsyncCreatePVIO
 casAsyncReadIO
 casAsyncWriteIO

 How to develop the server tool
 The first four classes are required to implement the server tool
 The channel class and the asynchronous IO classes can be used to add more

functionality
 Each class has several member functions which server tool must define

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

14 14

Interface of EPICS with MARTe

 Software Architecture

CAC IOC CAC IOC

MARTe

pCAS
(EPICSLib)

RT Thread

Writing
GAM

DDB

EPICS
GAM

Message
Broker

State
Machine

Writes Value

Parameter
(Configuration)

Reads Value

Message
Protocol

Streaming MARTe signals

Signals as PVs
(by FPSC)

Values / Parameters / Sequential operation (by KSTAR)

States

CA

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

15 15

Interface of EPICS with MARTe

 How to synchronize the two STATE Machines EPICS IOC and MARTe

pCAS PVs

o TEST_PCS:SYS_ARMING

o TEST_PCS:SYS_RUN

o TEST_PCS:SYS_STOP

o TEST_PCS:SEND_DATA

o TEST_PCS:RESET

o TEST_PCS:STATUS

MARTe Events

o PULSE_SETUP_COMPLETED

o TRIGGER

o END_PULSE

o COLLECTION_COMPLETED

o ...

MARTe States

o INITIAL

o IDLE

o WAITING_FOR_TRIGGER

o PULSING

o POST_PULSE

o INHIBIT

o ERROR

o CONFIG_ERROR

o ...

Central Controller
(CAC)

CA

HTTP based
Event Messages

IOC Operation States
o Idle, Standby
o Arming, Wait for Trigger
o In Progress, Post Processing
o Data Transfer

 The Central controller EPICS IOC synchronized with KSTAR SCS writes
pCAS PVs in MARTe based on state of the sequential operation

 Then a MARTe event matched with state is delivered to the State
Machine

 Then State Machine transforms the state of MARTe application.
 If shot sequence is started, SYS_ARMING PV is set to ON.
 Then PULSE_SETUP_COMPLETED event is delivered to state machine

and the state machine set own state to WAITING_FOR_TRIGGER
 The state of MARTe application is exported as a PV named STATUS

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

16 16

Interface of EPICS with MARTe

 EPICSLib

EPICSLib instantiates an EPICS CAS while in the MARTe
configuration file the description of the Process Variables to be
setup on the CAS

• Ex) loads process variables TARGET_X0 and
SHOT_NUMBER

The current version of the code mimics the listed EPICS records
• bi, mbbi, ai, longin, waveform (From FPCS)
• bo, ao : supported newly for this task (New)

The “mimic” in the sense that all fields required by those records
can be specified in the MARTe configuration file and are used to
generate events such as alarms, monitoring and archiving

The supported fields of EPICS PV are following:

EPICSLib has two threads.
• One handles messages from EPICS
• Another handles value of signals written by the EPICSGAM

The RunOnCPU parameters allocate each thread to the dedicated
CPU

+EPICSLib =

{

 Class = EPICSHandler

 //PREFIX = "MARTe:"

 debugLevel = 0

 scanOn = true

 asyncScan = true

 asyncDelay = 0.1

 maxSimultAsyncIO = 100

 RunOnCPU = 2

 RunOnCPU_event = 4

 ProcessVariable = {

 TEST-PCS:TARGET_X0 = {

 NAME = "TEST-PCS:TARGET_X0"

 TYPE = aitEnumFloat32

 SYNC = excasIoSync

 SCAN = "I/O Intr"

 }

 TEST-PCS:SHOT_NUMBER = {

 NAME = "TEST-PCS:SHOT_NUMBER

"

 TYPE = aitEnumInt32

 SYNC = excasIoSync

 SCAN = "I/O Intr"

 }

 …

MARTe Configuration File

NAME TYPE LEN PREC SYNC EGU HOPR LOPR HYST ADEL

HIHI HIGH LOW LOLO HHSV HSV LSV LLSV MDEL SCAN

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

17 17

Interface of EPICS with MARTe

 EPICSGAM

 A component that lives in the Real Time Thread and
interacts with the DDB reading signals on it. Then it
copies them to the EPICSLib

 To copy signals to the EPICSLib, EPICSGAM searches
EPICSLib object in the GlobalObjectDataBase

 Every Process Variable the system has to export to
EPICS must be configured in EPICSLib

 The map between MARTe signals and EPICS Process
Variables must be defined in the EPICSGAM
configuration section

 At initialization, EPICSGAM after locating EPICSLib
reads all signal descriptions and tries to subscribe its
interest for each read signal to EPICSLib

 The EPICS update rate can be configured through
ServerSubSampling parameter

+Thread_1 = {

 …

 +EPICSStream = {

 Class = EPICSGAM

 UsecTimeSignalName = usecTime

 NOfAcquisitionSamples = 2000

 SignalsServer = "EPICSLib"

 EventTrigger = {

 TimeWindow0 = {

 NOfSamples = 2000

 UsecPeriod = 1000

 }

 }

 Signals = {

 TEST-PCS:TARGET_X0 = {

 SignalName = "TEST-PCS:TARGET_X0"

 ServerName = "TEST-PCS:TARGET_X0"

 SignalType = float

 ServerSubSampling = 100

 }

 …

 }

 }

 …

 Online = "Timer PcsProc UDPOutput

 DACBoard WebStatistic

 Collection EPICSStream"

 Offline = "Timer PcsProc UDPOutput

 DACBoard WebStatistic

 EPICSStream"

}

 MARTe Configuration File

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

18 18

Interface of EPICS with MARTe

 GAM for writing PVs to signals
+Thread_1 = {

 +PcsProc = { // GAM

 …

 OutputSignals = {

 TEST-PCS:TARGET_X0 = {

 SignalName =

 "TEST-PCS:TARGET_X0"

 SignalType = float

 }

 }

 }

}

MARTe Configuration File

caStatus exPV::write (const casCtx &, const gdd & valueIn)

{

 if (valueIn.applicationType() == gddDbrToAit[DBR_PUT_ACKT].app) {

 return this->putAckt(valueIn);

 }

 else if (valueIn.applicationType() == gddDbrToAit[DBR_PUT_ACKS].app) {

 return this->putAcks(valueIn);

 }

 caStatus ret = this->update (valueIn, true, true);

 double value;

 this->pValue->get(value);

 // Send a MARTe message to the GAM

 // for writing signal value on the DDB

 CodacMessage::SendMessage (CODAC_MSG_TARGET_PCSPROC,

 0, "WRITE_SIGNAL", getName(), value);

 return (ret);

} exPV.cpp

EPICSGAM allows only reading signals on the DDB
New GAM was implemented to support writing signals, parameters

and states via CA
Writing signals should be defined in the OutputSignals section
When any PV is changed, exPV class derived from casPV class sends a

MARTe message to the GAM. This GAM acts as a device support of
EPICS, classifies the requests into writing value, sequential operation
and configuration of GAM

The requested writing value is stored to the DDB

GAM

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

19 19

Evaluating performance of MARTe

 Results of performance evaluation of the MARTe framework
 ŸThe performance is mainly improved by Real-time O/S itself
 ŸSecondly, the improvement can be achieved by tuning such as CPU affinity and priority
 MARTe provides a method to support the real-time functionality in a framework environment, and

in the case of Linux, the CPU affinity and priority for the real-time threads can be designated in the
application configuration file

 A certain degree of overhead is identified in the application based on MARTe framework, and its
difference from reference program in performance is more remarkable on MRG-R rather than on
RHEL 5.5. The added latency due to MARTe is about 17 µs but this latency increase is not
considered large proportion in considering the performance of the entire fast control system

 ŸThe addition of interfaces with EPICS and MDSplus gives little degradation in real-time
performance

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

20 20

Conclusions

 The MARTe (Multi-threaded Application Real-Time executor) framework has
been evaluated as a candidate real-time framework for a real-time feedback
control of the plasma density for a Plasma Control System (PCS)

 Portable Channel Access Server (pCAS) has been adopted into the MARTe
application to interface with EPICS

 The MARTe application with interface of EPICS has been operated successfully
in KSTAR sequential operation mode

 Future works are following:
 Improve the Writing GAM as a generic GAM
 Support more record types such as stringin and stringout
 Comparison the performance of affinity patched EPICS with MARTe

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

21 21

Acknowledgments and references

 Acknowledgments
 This work was performed within the cooperation defined in the Memorandum of

Understanding (MoU) between ITER International Organization (IO) and NFRI
 This work was supported by ITER CODAC Team and MARTe community
 This work used the results of ITER FPSC Project by ITER IO and FPSC Team

 ITER
 Fast Controller Workshop, Anders Wallander, Feb28, 2011

 Portable Channel Access Server
 Channel Access Server Tool Developers Training, Jeff Hill, Kay-Uwe Kasemir, LANL
 Portable Channel Access Server, Marty Kraimer, US Particle Accelerator School

 MARTe
 MARTe Framework – Middleware for RT Control Development, Andre Neto, et. al, IPFN/IST,

FPSC Workshop
 Performance Comparison of EPICS IOC and MARTe in a Hard Real-Time Control Application,

A. Barbalace, RFX
 RFX-mod Feedback Control System Upgrade, G. Manduchi, A. Barbalace, RFX
 MARTe in fusion, L. Zabeo & MARTe team, ITER Fast Controller Workshop
 MARTe-EPICS Integration for the ATCA FPSC, Bernado B. Carvalho, et. al, Jan 25, 2012, IST
 ITER FPSC Project, MARTe to EPICS Process Variable Interface
 MARTe-EPICS A Wining Combination for the ATCA FPSC, Bernado B. Carvalho, et. al, Feb 11,

2011, Diagnostics & Data Acquisition

Interface of EPICS with MARTe for Real-time Applications, October 23, 2012

22 22

Thanks for your attention

